Testing Time by Time Differences of EEG Signals using the Slopes within Multiple Comparisons Procedure

<u>Jaromil Frossard</u> Sami Capderou Olivier Renaud

Permutation Test in EEG

Cluster-Mass Test

Extension Using the Slopes

Example

Simulation Study

Conclusion

Comparisons of Signals or Massively Univariate Tests

Data from Tipura, Renaud, and Pegna (2019) available in R package permuco.

Model

We have a linear model at each time t:

$$Y_t = \mathbf{1}\mu_t + X\beta_t + \epsilon_t$$

where the design X is the same for all time-point. We want to test the hypotheses:

$$H_0: \beta_t = 0 \ \forall \ t \in \{1, \dots, T\}$$

For all t, we use a F statistic:

$$F_t = \frac{Y_t^{\top} H_{R_1 X} Y_t}{Y_t^{\top} R_{[1 X]} Y_t} \frac{n - p}{p - 1}$$

with
$$H_X = X(X^\top X)^{-1}X^\top$$
 and $R_X = I - H_X$.

We control the **FWER** using the cluster-mass test.

Cluster-Mass Test (1/4)

- Introduced by Bullmore et al. (1999) for fMRI data.
- Introduced by Maris and Oostenveld (2007) for EEG data.
- (+) Controls (weakly) the FWER.
- "Clusters"-level inference.
- (+) No influence of the sampling rate.
- Generalization to multi-channels analysis (full scalp).

R package:

- CRAN: permuco for 1 channel (Frossard and Renaud 2018).
- For the full scalp analysis: https://github.com/jaromilfrossard/clustergraph.

Cluster-Mass Test (2/4)

Cluster-mass Test (3/4)

1. For all t, we compute a F statistic:

$$\{Y_t, X\} \rightarrow F_t = \frac{Y_t^\top H_{R_1 X} Y_t}{Y_t^\top R_{[1X]} Y_t} \frac{n-p}{p-1}$$

2. We create **clusters** using the threshold τ and compute their **clustermass**:

$$\{F_t, \ \tau\} \ \to \ \mathrm{C}_k \to \ M_k$$

where M_k is the sum of F_t within the cluster C_k .

3. We compute the **null distribution** \mathcal{M}_0 of M_k by permutation, repeating (1-2) for each permutation:

$$\{Y_t^*, X\} \to F_t^* \to C_{k^*}^* \to \max(M_{k^*}^*)$$

4. For all n! permutations, the values $\max(M_{k^*}^*)$ produce the null distribution \mathcal{M}_0 . A p-value for C_k is computed by comparing M_k to \mathcal{M}_0 .

Cluster-mass Test (4/4)

- (+) Signals are smoothed (effects and noise).
- (+) In EEG, true effects happen by clusters.
- If there is a true effect at time t, it is likely that there is a similar effect at time t-1 or t+1.
- 1 underlying brain process => 1 cluster => 1 inference.
- (-) 1 underlying brain process => k clusters => k inferences.

Problems with Cluster-Mass Test

• 1 underlying brain process => 3 clusters => 3 inferences.

Binding Clusters with the Slopes

Notation

Model at time $t, \ \forall \ t \in 1, \dots, T$:

$$Y_t = \mathbf{1}\mu_t + X\beta_t + \epsilon_t. \tag{1}$$

Model for the slopes:

$$\dot{Y}_t = \mathbf{1}\dot{\mu}_t + X\dot{\beta}_t + \dot{\epsilon}_t,\tag{2}$$

where $\dot{\mu}_t = \frac{\partial \mu_t}{\partial t}$ and $\dot{\beta}_t = \frac{\partial \beta_t}{\partial t}$, with the same design X for both models.

Given a time interval I, if $\beta_t = 0 \ \forall \ t \in I$, then $\dot{\beta}_t = \frac{\partial \beta_t}{\partial t} = 0 \ \forall \ t \in I$.

We test simultaneously:

$$H_0^t: \beta_t = 0 \& \dot{\beta}_t = 0 \forall t \in 1, \dots, T$$
 (3)

Estimating the Slopes

- 1. Time differences.
 - (-) Increase the roughness of the signals
- 2. Local polynomial. Minimize:

$$\sum_{s=1}^{T} \left(Y_{is} - \sum_{j=0}^{p} \gamma_t^{(j)} (s-t)^j \right) K_h(s-t),$$

then $\hat{\gamma}_t^{(1)}$ is an estimator of \dot{Y}_{it} (Fan and Gijbels 1996). The bandwidth h, unique for all n signals, and is such that:

$$\sum_{i}^{n} \text{roughness}(Y_i) = \sum_{i}^{n} \text{roughness}(\hat{Y}_i),$$

where roughness(\cdot) is the variance of the second derivative using time differences (in R: var(diff(diff()))).

Summary

1. For all t, we compute a F statistic on the raw signal:

$$\{Y_t, X\} \rightarrow F_{Y_t} = \frac{Y_t^\top H_{R_1 X} Y_t}{Y_t^\top R_{[1X]} Y_t} \frac{n-p}{p-1}$$

2. And on their slopes:

$$\{\dot{Y}_t, X\} \rightarrow F_{\dot{Y}_t} = \frac{\dot{Y}_t^{\top} H_{R_1 X} \dot{Y}_t}{\dot{Y}_t^{\top} R_{[1X]} \dot{Y}_t} \frac{n-p}{p-1}$$

3. Then we create clusters with the threshold τ :

$$\begin{aligned} &\{F_{Y_t}, \ \tau\} \ \rightarrow \ \mathbf{C}_{Y:k} \rightarrow \ M_{Y:k} \\ &\{F_{\dot{Y}_t}, \ \tau\} \ \rightarrow \ \mathbf{C}_{\dot{Y}:l} \ \rightarrow \ M_{\dot{Y}:l} \end{aligned}$$

4. Finally we combine the clusters:

$$\{C_{Y:k}, C_{\dot{Y}:l}\} \rightarrow C_{Y\dot{Y}:m} \rightarrow M_{Y\dot{Y}:m}$$

Combining Clusters

Real Data Example

- Data from the electrode Cz.
- 2 sex of stimuli (M vs F).
- 3 emotions of stimuli (angry, neutral, happy).
- 2 types of instructions (focus sex, focus emotion).
- Repeated measures ANOVA design.
- Permutation of residuals: method by Kherad-Pajouh and Renaud (2015).

Main Effect of the Sex of Stimuli

Cluster-Mass and Extensions 1/2

Cluster-Mass and Extensions 2/2

Simulation setting

- Time difference, local polynomial
- Clustermass (classic), both, glue, link, half-bw
- σ : **0.6**, 1 and 1.2
- Lags between levels: 0, 2, 4, 6, 8 ms.
- Gaussian correlation function.

FWER

Slope Estim.	0.6	1	1.2
Clustermass			
no	.043 [.037;.050]	.047 [.041;.054]	.050 [.044;.058]
Both			
local poly.	.044 [.038;.051]	.046 [.040;.054]	.050 [.044;.058]
time diff.	.048 [.042;.055]	.048 [.042;.055]	.052 [.046;.060]
Glue			
local poly.	.046 [.039;.052]	.047 [.041;.054]	.052 [.046;.060]
time diff.	.042 [.036;.049]	.048 [.042;.055]	.050 [.043;.057]
Link			
local poly.	.042 [.037;.049]	.048 [.041;.055]	.051 [.045;.058]
time diff.	.042 [.037;.049]	.047 [.041;.054]	.050 [.044;.057]
Half-bw			
local poly.	.044 [.038;.051]	.048 [.042;.056]	.046 [.040;.053]

Rejection Rate: using time difference

Rejection Rate: using local polynomial

Rejection Rate

Conclusion

- FWER at the nominal level.
- Increase of power using the slopes.
- Smaller increase of false positive using glue or link.
- Extension to the full scalp?

Bibliography I

Bullmore, Edward T., John Suckling, Stephan Overmeyer, Sophia Rabe-Hesketh, Eric Taylor, and Michael J. Brammer. 1999. "Global, Voxel, and Cluster Tests, by Theory and Permutation, for a Difference Between Two Groups of Structural MR Images of the Brain." *IEEE Transactions on Medical Imaging* 18 (1): 32–42. https://doi.org/10.1109/42.750253.

Fan, Jianqing, and Irene Gijbels. 1996. Local Polynomial Modelling and Its Applications: Monographs on Statistics and Applied Probability 66. 1 edition. London; New York: Chapman and Hall/CRC.

Frossard, Jaromil, and Olivier Renaud. 2018. "Permuco: Permutation Tests for Regression, (Repeated Measures) ANOVA/ANCOVA and Comparison of Signals."

Bibliography II

Kherad-Pajouh, Sara, and Olivier Renaud. 2015. "A General Permutation Approach for Analyzing Repeated Measures ANOVA and Mixed-Model Designs." *Statistical Papers* 56 (4): 947–67. https://doi.org/10.1007/s00362-014-0617-3.

Maris, Eric, and Robert Oostenveld. 2007. "Nonparametric Statistical Testing of EEG- and MEG-Data." *Journal of Neuroscience Methods* 164 (1): 177–90. https://doi.org/10.1016/j.jneumeth.2007.03.024.

Tipura, E., O. Renaud, and A. J. Pegna. 2019. "Attention Shifting and Subliminal Cueing Under High Attentional Load: An EEG Study Using Emotional Faces." *Neuroreport*, October. https://doi.org/10.1097/WNR.0000000000001349.